Diabetes mellitus y su diagnóstico en el Laboratorio.

Encarnación Jiménez Moles
Mª Elvira Ortiz Callejón
Felicidad Béjar Pretel
Índice

1. **Diabetes mellitus** ... 4

2. **Los tipos de diabetes** ... 6
 - Prediabetes .. 6
 - Diabetes tipo 1 ... 6
 - Diabetes tipo 2 ... 7
 - Diabetes gestacional .. 7
 - Diabetes insípida: ... 8
 - Diabetes renal o glucosuria renal: .. 8
 - Cistinosis o amino-diabetes ... 9
 - Diabetes MODY: .. 9
 - Fosfato-diabetes .. 10
 - Otros tipos de diabetes mellitus ... 11

3. **Etimología** ... 11

4. **Descripción general** .. 12

5. **Síntomas y signos de diabetes mellitus no tratada** .. 13

6. **Diagnóstico en el Laboratorio** ... 15
 - Exámenes de sangre: .. 16
 - Glucemia en ayunas: ... 16
 - Examen de hemoglobina A1c: ... 22
 - Prueba de tolerancia a la glucosa oral: ... 25
 - Pruebas adicionales en los Laboratorios ... 31

7. **Hemoglobina glucosilada** .. 32

8. **Unidades de los exámenes de glucosa en la sangre** ... 34

9. **Tratamiento** .. 35
 - Intervenciones orientadas al estilo de vida .. 36
10. Historia de la Diabetes Mellitus .. 39

11. Causas .. 42
 - Causas genéticas del tipo 1 ... 43
 - Causas genéticas del tipo 2 ... 45

12. Complicaciones de la diabetes .. 45

13. Complicaciones agudas ... 49

14. Dieta en la diabetes ... 50
 - Alimentos inconvenientes ... 52
 - Cómo debe ser el horario de las comidas ... 53

15. Bibliografía ... 54
1. Diabetes mellitus

La diabetes mellitus (DM) es un conjunto de trastornos metabólicos, que afecta a diferentes órganos y tejidos, dura toda la vida y se caracteriza por un aumento de los niveles de glucosa en la sangre: hiper glucemia. La causan varios trastornos, siendo el principal la baja producción de la
hormona insulina, secretada por las células β de los Islotes de Langerhans del páncreas endocrino, o por su inadecuado uso por parte del cuerpo, que repercibirá en el metabolismo de los hidratos de carbono, lípidos y proteínas.

Los síntomas principales de la diabetes mellitus son emisión excesiva de orina (poliuria), aumento anormal de la necesidad de comer (polifagia), incremento de la sed (polidipsia), y pérdida de peso sin razón aparente. La Organización Mundial de la Salud reconoce tres formas de diabetes mellitus: tipo 1, tipo 2 y diabetes gestacional (ocurre durante el embarazo), cada una con diferentes causas y con distinta incidencia.

Para el año 2000, se estimó que alrededor de 171 millones de personas eran diabéticas en el mundo y que llegarán a 370 millones en 2030. Este padecimiento causa diversas complicaciones, dañando frecuentemente a ojos, riñones, nervios y vasos sanguíneos. Sus complicaciones agudas (hipoglucemia, cetoacidosis, coma hiperosmolar no cetósico) son consecuencia de un control inadecuado de la enfermedad mientras sus complicaciones crónicas (cardiovasculares, nefropatías, retinopatías, neuropatías y daños microvasculares) son consecuencia del progreso de la enfermedad. El Día Mundial de la Diabetes se conmemora el 14 de noviembre.
2. Los tipos de diabetes

➢ Prediabetes

Los niveles de azúcar en sangre están por encima de lo normal pero aún no lo suficiente para diagnosticarse la diabetes. La prediabetes es común en personas antes de desarrollar la diabetes tipo 2. Suele afectar a persona con antecedentes de esta enfermedad en la familia y también a personas con hábitos de vida poco saludables, dieta inadecuada y sedentarismo.

➢ Diabetes tipo 1

La incidencia es sobre todo en niños y adolescentes. Su organismo no produce insulina todos los días. Acompañando a esta enfermedad, puede haber episodios de:

- Hipoglucemia (baja presencia de azúcar en sangre, dolores de cabeza, temblores)
- Hiperglucemia (o alta presencia azúcar en sangre, aumento sed, aumento hambre, nauseas vómitos)
- Cetacidosis (es la acumulación de centonas en la sangre debido a la falta de insulina en el organismo).
➢ Diabetes tipo 2

Es la forma más común, y consiste en que el organismo no produce suficiente insulina o tiene una alta resistencia a esta hormona. A corto plazo la enfermedad puede afectar a la cantidad de energía que procesa el organismo. A largo plazo la enfermedad afecta a varios órganos internos, de ahí la necesidad del diagnóstico precoz y tratamiento con insulina y una dieta adecuada.

➢ Diabetes gestacional

Se desarrolla durante el embarazo, durante el cual los niveles de glucosa pueden subir, aunque las mujeres que la padecen, antes de su embarazo tuvieran niveles de azúcar en sangre normales.

No se sabe bien el origen de este tipo de diabetes; existen hipótesis que indican que se debe al aumento en la producción de hormonas de la placenta durante el periodo de desarrollo fetal.
Diabetes insípida:

Se da por una deficiencia de la vasopresina (hormona anti diurética), por resistencia a sus efectos. Estos pacientes orinan mucho y tienen elevados el sodio y la osmolaridad. Hay dos clases, Diabetes insípida central, y diabetes insípida familiar ligada al sexo.

Diabetes renal o glucosuria renal:

Se debe a la presencia de glucosa elevada en la orina. En ausencia de la enfermedad, la glucosa se reabsorbe en su totalidad a través de las nefronas, unidades funcionales del riñón.

Ocurre que si los niveles de glucosa en sangre están por encima de los 180mg/dl de glicemia, la nefrona permite que se elimine glucosa por la
orina para compensar la sobrecarga e glicemia que la insulina no compensa.

➤ **Cistinosis o amino-diabetes**

Esta enfermedad metabólica es poco común. Se produce por una acumulación de cistina en los tejidos orgánicos. Aparecen entonces cristales de cistina en la conjuntiva, la córnea, la médula ósea, los ganglios linfáticos, las vísceras, leucocitos etc.

➤ **Diabetes MODY:**

Su nombre viene del las siglas en inglés *Maturity Onset Diabetes of the Young*. Los enfermos de este tipo de diabetes cursan la enfermedad con menos de 25 años; su herencia es autosómica dominante, razón por
la cual es frecuente encontrar hasta 3 generaciones de la misma familia afectadas con esta enfermedad. No necesitan insulina al menos en los 5 años posteriores al diagnóstico.

➢ **Fosfato-diabetes**

incluyendo el síndrome de Fanconi: Son enfermedades poco frecuentes. En la fosfato diabetes los niveles altos de fosfatos inciden en el metabolismo de la glucosa. En el Síndrome de Fanconi hay un trastorno del funcionamiento del túbulo que da como resultado cantidades excesivas de glucosa, bicarbonato, fosfatos y ciertos aminoácidos en la orina. Este síndrome puede ser hereditario o puede estar causados por
otros factores como metales pesados, agentes químicos o deficiencias de vitamina D.

➤ Otros tipos de diabetes mellitus

Otros tipos de diabetes mellitus menores (< 5% de todos los casos diagnosticados):

- Tipo 3A
- Tipo 3B
- Tipo 3C
- Tipo 3D
- Tipo 3E

3. Etimología

Enfermedad metabólica que se caracteriza, entre otros signos, por la eliminación de orina cargada de glucosa (glucosuria).

En el Río de la Plata es frecuente la forma diabetis en el habla popular, por confusión con el sufijo -itis ‘inflamación’, presente en apendicitis, hepatitis, por ejemplo.

Mellitus significa en latín ‘endulzado con miel’ en alusión al sabor dulce de la orina de los diabéticos debido al exceso de azúcar.

El origen de la enfermedad permaneció desconocido durante mucho tiempo, hasta que Paul Lagerhans, en el siglo XIX, descubrió en el páncreas unos grupos de células, conocidas hoy como islotes de Lagerhans, que su investigador creyó vinculados a la diabetes. Pero fue sólo a comienzos del siglo XX cuando se determinó que en esos islotes se produce una hormona llamada insulina, la sustancia que regula el nivel de azúcar en la sangre. En 1922 se pudo tratar por primera vez con insulina a un paciente de diabetes.

También se llama diabetes a otra enfermedad con causas y síntomas diferentes, la diabetes insipidus, pero la diabetes mellitus es, con mucho, la más frecuente y conocida.

4. Descripción general

Las células metabolizan la glucosa para convertirla en una forma de energía útil; por ello el organismo necesita recibir glucosa (a través de los alimentos), absorberla (durante la digestión) para que circule en la sangre y se distribuya por todo el cuerpo, y que finalmente, de la sangre
vaya al interior de las células para que pueda ser utilizada. Esto último sólo ocurre bajo los efectos de la insulina, una hormona secretada por el páncreas.

En la DM (diabetes mellitus) el páncreas no produce o produce muy poca insulina (DM Tipo I) o las células del cuerpo no responden normalmente a la insulina que se produce (DM Tipo II).

 Esto evita o dificulta la entrada de glucosa en la célula, incrementando sus niveles en la sangre (hiperglucemia). La hiperglucemia crónica que se produce en la diabetes mellitus tiene un efecto tóxico que deteriora los diferentes órganos y sistemas y puede llevar al coma y la muerte.

La diabetes mellitus es un trastorno endocrino-metabólico crónico, que afecta la función de todos los órganos y sistemas del cuerpo, el proceso mediante el cual se dispone del alimento como fuente energética para el organismo (metabolismo), los vasos sanguíneos (arterias, venas y capilares) y la circulación de la sangre, el corazón, los riñones, y el sistema nervioso (cerebro, retina, sensibilidad cutánea y profunda, etc.).

5. Síntomas y signos de diabetes mellitus no tratada

En el caso de que todavía no se haya diagnosticado la DM ni comenzado su tratamiento, o que no esté bien tratada, se pueden
encontrar los siguientes signos (derivados de un exceso de glucosa en sangre, ya sea de forma puntual o continua):

Signos y síntomas más frecuentes:

- Poliuria, polidipsia y polifagia.
- Pérdida de peso a pesar de la polifagia. Se debe a que la glucosa no puede almacenarse en los tejidos debido a que éstos no reciben la señal de la insulina.
- Fatiga o cansancio.
- Cambios en la agudeza visual.

Signos y síntomas menos frecuentes:

- Vaginitis en mujeres, balanitis en hombres.
- Aparición de glucosa en la orina u orina con sabor dulce.
- Ausencia de la menstruación en mujeres.
- Aparición de impotencia en los hombres.
- Dolor abdominal.
- Hormigueo o adormecimiento de manos y pies, piel seca, úlceras o heridas que cicatrizan lentamente.
- Debilidad.
- Irritabilidad.
- Cambios de ánimo.
- Náuseas y vómitos.
- Mal aliento
En animales algunos síntomas son similares a los humanos pero se diferencian en algunos aspectos.

Signos y síntomas frecuentes:

- Poliuria, polidipsia y polifagia.
- Adelgazamiento y cansancio.

Signos y síntomas menos frecuentes y en casos graves:

- Debilidad
- Cetonuria.
- Cataratas. Muy frecuente en perros, poco frecuente en gatos.
- Neuropatía diabética. Más frecuente en el gato que en el perro.
- Deshidratación
- Taquipnea
- Vómitos
- Olor a acetona
- Hipotermia
- Coma

6. Diagnóstico en el Laboratorio

Se puede utilizar un análisis de orina para buscar hiperglucemia; sin embargo, una prueba de orina sola no diagnostica diabetes.
El médico puede sospechar que usted tiene diabetes si su azúcar en la sangre es superior a 200 mg/dL. Para confirmar el diagnóstico, se deben hacer uno o más de los siguientes exámenes:

- **Exámenes de sangre:**

 - **Glucemia en ayunas:**

 Es un examen que mide la cantidad de un azúcar llamado glucosa en una muestra de sangre.

 La glucosa es una fuente importante de energía para la mayoría de las células del cuerpo, incluidas las del cerebro. Los carbohidratos que se encuentran en las frutas, los cereales, el pan, la pasta y el arroz se transforman rápidamente en glucosa en el cuerpo, lo que eleva el nivel de dicho azúcar en la sangre.

 Las hormonas producidas en el cuerpo llamadas insulina y glucagón ayudan a controlar los niveles de azúcar en la sangre.

Forma en que se realiza el examen

Se necesita una muestra de sangre. Para obtener información sobre la forma como se hace esto, ver el artículo: venopunción.

Preparación para el examen

El examen se puede hacer de dos maneras:
• Después de no haber comida nada (en ayunas) durante al menos 8 horas.
• En cualquier momento del día (aleatorio).

Lo que se siente durante el examen

Cuando se inserta la aguja para extraer la sangre, algunas personas sienten un dolor moderado, mientras que otras sólo sienten un pinchazo o sensación de picadura. Posteriormente, puede haber algo de sensación pulsátil.

Razones por las que se realiza el examen

El médico puede solicitar este examen si uno tiene signos de diabetes. Sin embargo, otros exámenes (prueba de tolerancia a la glucosa y examen de glucemia en ayunas) son mejores para diagnosticar la diabetes.

El examen de glucemia también se utiliza para monitorear a pacientes que padezcan diabetes. También se puede hacer si usted presenta:

• Un cambio en el comportamiento
• Episodios de desmayo
• Convulsiones por primera vez
Valores normales

Si le hicieron un examen de glucemia en ayunas, un nivel entre 70 y 100 miligramos se considera normal.

Si le hicieron un examen de glucemia aleatorio, los resultados normales dependen de cuándo fue la última vez que comió. La mayoría de las veces, los niveles de glucemia estarán por debajo de 125 mg/dL.

Los rangos de los valores normales pueden variar ligeramente entre laboratorios. Hable con el médico acerca del significado de los resultados específicos de su examen.

Los ejemplos anteriores muestran las mediciones comunes para los resultados de estas pruebas. Algunos laboratorios usan diferentes medidas o pueden evaluar distintas muestras.

Significado de los resultados anormales

Si le hicieron un examen de glucemia en ayunas:

- Un nivel de 100 a 125 mg/dL significa que usted tiene una alteración de la glucosa en ayunas, un tipo de prediabetes. Esto incrementa el riesgo para la diabetes tipo 2.
- Un nivel de 126 mg/dL o mayor casi siempre significa que usted tiene diabetes.
Los niveles aleatorios de glucosa en la sangre superiores a los normales pueden ser un signo de diabetes. En alguien que tenga diabetes, puede significar que la enfermedad no está bien controlada. El médico probablemente ordenará una glucemia en ayunas o un examen de tolerancia a la glucosa, dependiendo del resultado del examen aleatorio.

Otros problemas médicos también pueden provocar niveles de glucosa en la sangre superiores a lo normal, como:

- Hipertiroidismo
- Cáncer pancreático
- Pancreatitis
- Tumores raros, entre ellos feocromocitoma, acromegalia, síndrome de Cushing o glucagonoma

Los niveles de glucosa en la sangre inferiores a lo normal (hipoglucemia) pueden deberse a:

- Hipopituitarismo (un trastorno de la hipófisis)
- Hipotiroidismo
- Insulinoma (muy poco común)
- Muy poco alimento
- Demasiada insulina u otros medicamentos para la diabetes
Riesgos

Las venas y las arterias varían de tamaño de un paciente otro y de un lado del cuerpo a otro, razón por la cual obtener una muestra de sangre de algunas personas puede resultar más difícil que de otras.

Otros riesgos asociados con la extracción de sangre son leves, pero pueden ser:

- Sangrado excesivo
- Desmayo o sensación de mareo
- Hematoma (acumulación de sangre debajo de la piel)
- Infección (un riesgo leve cada vez que se presenta ruptura de la piel)

Consideraciones

Muchas formas de estrés intenso (por ejemplo, traumatismo, accidente cerebrovascular, ataque cardíaco y cirugía) pueden aumentar temporalmente los niveles de glucosa en la sangre.

Entre los fármacos que pueden aumentar las mediciones de la glucosa están los siguientes:

- Ciertos medicamentos para tratar la esquizofrenia y la psicosis
- Betabloqueadores (como propanolol)
- Corticosteroides (como prednisona)
- Estrógenos
- Glucagón
- Isoniazida
- Litio
- Anticonceptivos orales (píldoras anticonceptivas)
- Fenotiazinas
- Fenitoína
- Salicilatos (ver sobredosis de ácido acetilsalicílico (aspirin))
- Diuréticos tiazídicos (como hidroclorotiazida)
- Triamtereno
- Antidepresivos tricíclicos

Entre los fármacos que pueden disminuir las mediciones de glucosa están los siguientes:

- Paracetamol
- Alcohol
- Esteroides anabólicos
- Clofibrato
- Disopiramida
- Gemfibrozilo
- Inhibidores de la monoaminoxidasa (IMAO)
- Pentamidina
Nombres alternativos

Glucemia aleatoria; Nivel de glucemia (azúcar en la sangre); Glucemia en ayunas

- Examen de hemoglobina A1c:

Es un examen de laboratorio que muestra el nivel promedio de azúcar (glucosa) en la sangre durante tres meses. Este examen muestra qué tan bien está controlando usted la diabetes.

Forma en que se realiza el examen

Se necesita una muestra de sangre. Algunos métodos sólo requieren una punción rápida en el dedo, mientras que otros pueden necesitar una muestra de sangre de una vena. Para obtener información sobre la forma en que se hace esto, ver el artículo: venopunción.

Preparación para el examen

No se necesita ninguna preparación especial.

Lo que se siente durante el examen

Cuando se introduce la aguja, se puede sentir un ligero pinchazo o algo de picazón. Posteriormente, puede haber algo de sensación pulsátil.
Razones por las que se realiza el examen

El examen también se puede emplear para detectar si hay diabetes.

Valores normales

Un valor de HbA1c menor o igual al 6% es normal.

Los siguientes son los resultados cuando el HbA1c se usa para diagnosticar diabetes:

- Normal: menos de 5.7%
- Prediabetes: 5.7 a 6.4%
- Diabetes: 6.5% o más

Si tiene diabetes, usted y el médico o la enfermera analizarán el rango correcto en su caso. Para muchas personas, la meta es mantener el nivel en 6.5% a 7% o menos.

Nota: los rangos de los valores normales pueden variar ligeramente entre diferentes laboratorios. Hable con el médico acerca del significado de los resultados específicos de su examen. Los ejemplos anteriores muestran las mediciones comunes para los resultados de estas pruebas. Algunos laboratorios usan diferentes medidas o pueden evaluar diferentes muestras.
Significado de los resultados anormales

Los resultados anormales significan que usted ha tenido altos niveles de azúcar en la sangre durante un período de semanas o meses.

Si su nivel de HbA1c está por encima de 6.5% y aún no tiene diabetes, le pueden diagnosticar la enfermedad.

Si su nivel está por encima del 7% y tiene diabetes, esto significa que el control de la enfermedad puede no ser tan bueno. La meta para el HbA1c la debe determinar con el médico.

En general, cuanto más alto esté el HbA1c, mayor será el riesgo de desarrollar problemas como:

- Enfermedad ocular
- Cardiopatía
- Enfermedad renal
- Daño neurológico
- Accidente cerebrovascular

Si el nivel de HbA1c permanece alto por un período de tiempo largo, el riesgo de tener estos problemas es incluso mayor.

Pregúntele al médico con qué frecuencia se debe hacer revisar el nivel. Los médicos generalmente recomiendan hacerse el examen cada 3 o 6 meses.
Riesgos

Obtener una muestra de sangre de algunas personas puede ser más difícil que de otras.

Otros riesgos relacionados con la extracción de sangre son leves, pero pueden ser:

- Sangrado excesivo
- Desmayo o sensación de mareo
- Hematoma (acumulación de sangre debajo de la piel)
- Infección (un riesgo leve cada vez que se presenta ruptura de la piel)

Nombres alternativos

Hemoglobina glicosilada; Hemoglobina glucosilada; HbG; Glucohemoglobina; A1C

- Prueba de tolerancia a la glucosa oral:

Es un método de laboratorio para verificar la forma en que el cuerpo descompone el azúcar.

Forma en que se realiza el examen

La prueba más común de tolerancia a la glucosa es la prueba de tolerancia a la glucosa oral (PTGO).
Antes de que el examen comience, se tomará una muestra de sangre.

Luego, a usted se le solicita que tome un líquido que contiene una cierta cantidad de glucosa (por lo regular 75 gramos). Se le toman muestras de sangre nuevamente cada 30 a 60 minutos después de beber la solución.

El examen demora hasta 3 horas.

Un examen similar es una prueba de tolerancia a la glucosa intravenosa (PTGIV), que rara vez se utiliza y que nunca se emplea para diagnosticar diabetes. En esta prueba, se inyecta la glucosa en una vena durante tres minutos. Los niveles de insulina en la sangre se miden antes de la inyección y de nuevo en los minutos uno y tres después de ésta, aunque el tiempo puede variar.

Preparación para el examen

Asegúrese de comer normalmente durante algunos días antes del examen.

No coma ni beba nada durante al menos 8 horas antes del examen y tampoco durante éste.

Consúltele al médico si cualquiera de los medicamentos que toma puede afectar los resultados del examen.
Lo que se siente durante el examen

Algunas personas sienten náuseas, sudoración, mareo o, incluso, pueden sentir dificultad para respirar o desmayarse después de tomar la glucosa; sin embargo, los efectos secundarios serios de este examen son muy infrecuentes.

Cuando se introduce la aguja para extraer la sangre, algunas personas sienten un dolor moderado, mientras que otras sólo sienten un pinchazo o sensación de picadura. Posteriormente, puede haber algo de sensación pulsátil.

Razones por las que se realiza el examen

La glucosa es el azúcar que el cuerpo utiliza como energía. Los pacientes que padecen de diabetes no tratada tienen niveles altos de azúcar en la sangre. Las pruebas de tolerancia a la glucosa son una de las herramientas empleadas para diagnosticar la diabetes.

Los niveles de glucosa en la sangre por encima de lo normal se pueden utilizar para diagnosticar diabetes tipo 2 o niveles altos de glucosa en la sangre durante el embarazo (diabetes gestacional). También se pueden medir los niveles de insulina, la hormona producida por el páncreas, que transporta la glucosa desde el torrente sanguíneo hasta las células.

La prueba de tolerancia a la glucosa oral se utiliza para evaluar a las mujeres embarazadas en busca de diabetes gestacional entre las
semanas 24 y 28 del embarazo. También se puede utilizar cuando se sospecha la enfermedad, aunque la glucemia en ayunas sea normal.

Valores normales

Valores sanguíneos normales para una prueba de tolerancia a la glucosa oral con 75 gramos, utilizada para detectar diabetes tipo 2 en personas que no estén embarazadas:

- Ayunas: 60 a 100 mg/dL
- 1 hora: menos de 200 mg/dL
- 2 horas: menos de 140 mg/dL

Nota: mg/dL = miligramos por decilitro.

Los ejemplos de arriba son mediciones comunes para los resultados de estos exámenes. Los rangos de los valores normales pueden variar ligeramente entre laboratorios. Algunos laboratorios utilizan mediciones diferentes o analizan distintas muestras. Hable con el médico acerca del significado de los resultados específicos de su examen.

Significado de los resultados anormales

Niveles de glucosa superiores a los normales pueden significar que usted tiene prediabetes, diabetes o diabetes gestacional.
Entre 140 y 200 mg/dL, se denomina alteración de la tolerancia a la glucosa. El médico puede llamar a esto "prediabetes", y significa que usted está en mayor riesgo de padecer diabetes.

Un nivel de glucosa de 200 mg/dL o superior es un signo de diabetes.

Sin embargo, los niveles altos de glucosa pueden estar relacionados con otro problema clínico (por ejemplo, el síndrome de Cushing).

Riesgos

Las venas y las arterias varían en tamaño de un paciente a otro y de un lado del cuerpo a otro; por esta razón, puede ser más difícil obtener una muestra de sangre de algunas personas que de otras.

Otros riesgos asociados con la extracción de sangre son leves, pero pueden ser:

- Sangrado excesivo
- Desmayo o sensación de mareo
- Hematoma (acumulación de sangre debajo de la piel)
- Infección (un riesgo leve cada vez que se presenta ruptura de la piel)

Consideraciones

Factores que pueden afectar los resultados del examen:

- Estrés agudo (por ejemplo, por una cirugía o una infección)
- Ejercicio vigoroso

Algunos fármacos pueden producir intolerancia a la glucosa, como:

- Antipsicóticos atípicos, como aripiprazol, olanzapina, quetiapina, risperidona y ziprasidona
- Betabloqueadores, como propanolol
- Anticonceptivos orales (pastillas anticonceptivas)
- Corticosteroides, como prednisona
- Dextrosa
- Epinefrina
- Estrógenos
- Glucagón
- Isoniazida
- Litio
- Fenotiazinas
- Fenitoína
- Salicilatos, incluido el ácido acetilsalicílico (aspirin)
- Diuréticos tiazídicos, como hidroclorotiazida
- Triamtereno
- Antidepresivos tricíclicos

Antes del examen, hágale saber al médico si está tomando cualquiera de estos medicamentos.
Nombres alternativos

Prueba de tolerancia a la glucosa oral

Pruebas adicionales en los Laboratorios

Existen exámenes de laboratorio para monitorizar los órganos afectados en la diabetes mellitus (mediante control del nivel de glucosa, función renal, dislipidemia, etc.). Además de un examen médico adecuado, el laboratorio brinda actualmente exámenes como los siguientes:

Exámenes de laboratorio de rutina de seguimiento y para monitorizar complicaciones en órganos blanco.

- Determinación de microalbuminuria en orina de 24 h.
- Hemoglobina glucosilada
- Perfil de lípidos
- Creatininemia, uremia, electrolitos plasmáticos

Revisiones por especialistas que también ayudan a evitar complicaciones.

- Revisión anual por oftalmología, preferentemente revisión de fondo de ojo con pupila dilatada.
- Revisión por cardiology, con monitorización de la presión arterial, perfil de lípidos y de ser necesario prueba de esfuerzo.
- Revisión del plan de alimentación por experto en nutrición.
- Revisión por podología por onicomicosis, tiña, uñas incarnadas (onicocriptosis)

7. Hemoglobina glucosilada

Este examen sencillo ofrece un resultado muy valioso en cuanto al control del paciente con diabetes. Su principio básico es el siguiente: la hemoglobina es una proteína que se encuentra dentro de los glóbulos rojos de la sangre y de lo que se ocupa es del transporte de oxígeno, el cual lo toma a nivel pulmonar y por esta vía la lleva al resto del cuerpo pulmones hacia todas las células del organismo. Pero esta afinidad no es precisamente nada más con el oxígeno. La glucosa se une también a ella sin la acción de insulina.
La misma fisiopatología de la diabetes nos indica que la glucosa se encontrará en niveles muy elevados en sangre, por la deficiencia de insulina o por la incapacidad de esta para poderla llevar a las células (resistencia a la insulina). Esa glucosa en exceso entra a los glóbulos rojos y se une con moléculas de hemoglobina, glucosilándola. En sentido de proporción, a mayor glucosa, mayor hemoglobina glucosilada. Aunque la hemoglobina glucosilada tiene varias fracciones (HbA1a, HbA1b, y HbA1c) la más estable, la que tiene una unión con la glucosa más específica es la fracción HbA1c.

El tiempo de vida de los glóbulos rojos es aproximadamente de 120 días. Esta medición expresa el nivel de azúcar en promedio de 2 a 3 meses atrás, por lo que es un parámetro aceptable para seguir el control de un paciente. Por este motivo se recomienda solicitar dicho examen tres o cuatro veces al año. Esto es sumamente útil en el control de los pacientes, debido a que usualmente estos mejoran su dieta en los días previos al control de la glicemia, falseando los resultados. El valor de la hemoglobina glucosilada es una herramienta eficaz para ver el control metabólico en los últimos meses.
8. Unidades de los exámenes de glucosa en la sangre

Las unidades de los resultados de exámenes de glucosa en la sangre pueden presentarse en mmol/l o en mg/dl, dependiendo del país donde se ejecuten.

La fórmula para la conversión de glucosa en la sangre de mmol/l a mg/dl:

- $Y \text{ (en mg/dl)} = 17.5 \times X \text{ (en mmol/l)} + 3.75$

o bien de mg/dl a mmol/l:

<table>
<thead>
<tr>
<th>A1C%</th>
<th>mg/dl</th>
<th>mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>135</td>
<td>7.5</td>
</tr>
<tr>
<td>7</td>
<td>170</td>
<td>9.5</td>
</tr>
<tr>
<td>8</td>
<td>205</td>
<td>11.5</td>
</tr>
<tr>
<td>9</td>
<td>240</td>
<td>13.5</td>
</tr>
<tr>
<td>10</td>
<td>275</td>
<td>15.5</td>
</tr>
<tr>
<td>11</td>
<td>310</td>
<td>17.5</td>
</tr>
<tr>
<td>12</td>
<td>345</td>
<td>19.5</td>
</tr>
</tbody>
</table>
• X (en mmol/l) = [Y (en mg/dl) – 3,75] / 17,5

9. Tratamiento

Tanto en la diabetes tipo 1 como en la tipo 2, como en la gestacional, el objetivo del tratamiento es restaurar los niveles glucémicos normales, entre 70 y 105 mg/dl. En la diabetes tipo 1 y en la diabetes gestacional se aplica un tratamiento sustitutivo de insulina o análogos de la insulina. En la diabetes tipo 2 puede aplicarse un tratamiento sustitutivo de insulina o análogos, o bien, un tratamiento con antidiabéticos orales.

Para determinar si el tratamiento está dando resultados adecuados se realiza una prueba llamada hemoglobina glucosilada (HbA1c ó A1c). Una persona No-diabética tiene una HbA1c < 6%. El tratamiento debería acercar los resultados de la A1c lo máximo posible a estos valores.

Un amplio estudio denominado DDCT demostró que buenos resultados en la A1c durante años reducen o incluso eliminan la aparición de complicaciones tradicionalmente asociadas a la diabetes: insuficiencia renal crónica, retinopatía diabética, neuropatía periférica, etc.

Científicos del King College de Londres han puesto en marcha un proyecto para desarrollar una nueva terapia para la diabetes tipo 1. Se espera que el tratamiento controle las respuestas autoinmunes.
subyacentes que dirige a la inflamación y evitando que se desarrolle la diabetes. El proyecto es la culminación de los esfuerzos de descubrimiento de fármacos en el Departamento de Inmunobiología. El equipo desarrollará un medicamento llamado MultiPepT1De, a partir de un “cóctel” de los péptidos, una estrategia conocida en la inmunoterapia de péptidos. La respuesta autoinmune en la diabetes tipo 1 se dirige péptidos específicos en las células β de los que producen la insulina, que conduce a la inflamación, la pérdida de células beta y la deficiencia de la insulina completa. Con la introducción de fragmentos seleccionados de las proteínas clave de las células β de una forma que apagan la inflamación, se espera que esta voluntad de “reset” del sistema inmune.

Intervenciones orientadas al estilo de vida

Los principales factores ambientales que incrementan el riesgo de diabetes tipo 2 son la nutrición excesiva y una forma de vida sedentaria, con el consiguiente sobrepeso y obesidad.

Una pérdida de peso mínima, incluso de 4 kg, con frecuencia mejora la hiper glucemia. En la prevención de la enfermedad, una pérdida similar reduce hasta en un 60% el riesgo.

Un tratamiento completo de la diabetes debe de incluir no solo una dieta sana (como, por ejemplo, la dieta mediterránea) y ejercicio físico moderado y habitual sino también un control médico constante.
Asimismo conviene eliminar otros factores de riesgo cuando aparecen al mismo tiempo como la hipercolesterolemia.

➢ **Dieta y ejercicio físico**

Mantener una dieta sana es una de las mejores maneras que se puede tratar la diabetes. Ya que no hay ningún tratamiento que se deshaga de la diabetes, en cuanto la persona sea diagnosticada con diabetes debe empezar a mantener una dieta sana. La persona debe cuidar la cantidad de gramos de carbohidratos que come durante el día, adaptándola a las necesidades de su organismo y evitando los alimentos con [índice glucémico] alto. Lo que esto significa es que la persona no puede comer muchas comidas con contenido de harina blanca. Elegir panes y pastas hechas de harina integral es no solo mucho más saludable sino que también va a ayudar a la persona controlar mejor la insulina que el cuerpo produce. También hay muchos productos en el mercado que están hechos para los diabéticos. En los EE.UU. los productos se llaman "Sugar Free", o sea, "Sin Azúcar". Estos productos tienen contenidos de azúcar artificial que no tiene calorías pero le da el sabor dulce a la comida. Se debe, no obstante, tener mucho cuidado con estos productos, ya que "Sin azúcar" (O sin carbohidratos con índice glucémico alto), no es lo mismo que "Sin Carbohidratos". Unas galletas en las que figure "Sin azúcar" contendrán muy pocos hidratos de carbono con [índice glucémico] alto, pero
contendrán no obstante muchos hidratos de carbono procedentes del cereal de las galletas que es necesario controlar.

El ejercicio es otra cosa muy importante en el tratamiento de la diabetes, ya que la persona debe bajar de peso y la actividad física es necesaria en este procedimiento. El ejercicio también afecta los niveles de insulina que produce el cuerpo y sensibiliza los tejidos a la insulina. la Diabetes es una enfermedad a la que le puede pasar a cualquiera de nosotros si es que no nos cuidamos debidamente, debemos tomar nuestras medidas preventivas y así llevar una vida saludable.

Medicamentos

- **Biguanidas.** Como la metformina. Aumentan la sensibilidad de los tejidos periféricos a la insulina, actuando como normoglicemiantes
- **Sulfonilureas.** Como la clorpropamida y glibenclamida. Reducen la glucemia intensificando la secreción de insulina. En ocasiones se utilizan en combinación con Metformina.
- **Meglitinidas.** Como la repaglinida y nateglinida. Estimulan la secreción de insulina.
- **Inhibidores de α-glucosidasa.** Como la acarbosa. Reducen el índice de digestión de los polisacáridos en el intestino delgado proximal, disminuyendo principalmente los niveles de glucosa posprandial.
- **Tiazolidinediona.** Como la pioglitazona. Incrementan la sensibilidad del músculo, la grasa y el hígado a la insulina.
• **Insulina.** Es el medicamento más efectivo para reducir la glucemia aunque presenta hipoglucemia como complicación frecuente.

• **Agonistas del péptido similar al glucagón tipo 1 (GLP-1).** Como la exenatida. El GLP-1 es un péptido de origen natural producido por las células L del intestino delgado, potencia la secreción de insulina estimulada por la glucosa.

• **Agonistas de amilina.** Como la pramlintida. Retarda el vaciamiento gástrico, inhibe la producción de glucagón de una manera dependiente de la glucosa.

• **Inhibidores de la Di-Peptidil-Peptidasa-IV.** Como la sitagliptina. Intensifican los efectos de GLP-1.

Para conseguir un buen control de la Diabetes Mellitus, en todos los tipos de ésta, es imprescindible la Educación Terapéutica en Diabetes que, impartida por profesionales sanitarios específicamente formados en Educación Terapéutica en Diabetes (médicos o enfermeros/as-Educadores Terapéuticos en Diabetes-), persigue el adiestramiento de la persona con Diabetes y de las personas cercanas a ella, para conseguir un buen control de su enfermedad, modificando los hábitos que fuesen necesarios, para el buen seguimiento del tratamiento (Dieta + Ejercicio Físico + Tratamiento medicamentoso-si precisa-).

10. **Historia de la Diabetes Mellitus**
La diabetes mellitus era ya conocida antes de la era cristiana. En el papiro de Ebers descubierto en Egipto y que data al siglo XV a. C., ya se describen síntomas que parecen corresponder a la diabetes. Fue Areteo de Capadocia quien, en el siglo II de la era cristiana, le dio a esta afección el nombre de diabetes, que significa en griego correr a través, refiriéndose al signo más llamativo que es la eliminación exagerada de agua por el riñón, expresando que el agua entraba y salía del organismo del diabético sin fijarse en él.

En el siglo II Galeno también se refirió a la diabetes. En los siglos posteriores no se encuentran en los escritos médicos referencias a esta enfermedad hasta que, en el siglo XI, Avicena habla con clara precisión de esta afección en su famoso Canon de medicina. Tras un largo intervalo fue Tomás Willis quien, en 1679, hizo una descripción magistral de la diabetes, quedando desde entonces reconocida por su sintomatología como entidad clínica. Fue él quien, refiriéndose al sabor dulce de la orina, le dio el nombre de diabetes mellitus (sabor a miel).

En 1775 Dopson identificó la presencia de glucosa en la orina. Frank, en esa época también, clasificó la diabetes en dos tipos: diabetes mellitus (o diabetes vera), y diabetes insípida (porque esta última no presentaba la orina dulce). La primera observación necrósica en un diabético fue realizada por Cawley y publicada en el “London Medical Journal” en 1788. Casi en la misma época el inglés John Rollo atribuyó la dolencia a una causa gástrica y consiguió mejorías notables con un régimen rico
en proteínas y grasas y limitado en hidratos de carbono. Los primeros trabajos experimentales relacionados con el metabolismo de los glúcidos fueron realizados por Claude Bernard quien descubrió, en 1848, el glucógeno hepático y provocó la aparición de glucosa en la orina excitando los centros bulbares.

En la segunda mitad del siglo XIX el gran clínico francés Bouchardat señaló la importancia de la obesidad y de la vida sedentaria en el origen de la diabetes y marcó las normas para el tratamiento dietético, basándolo en la restricción de los glúcidos y en el bajo valor calórico de la dieta. Los trabajos clínicos y anatomopatológicos adquirieron gran importancia a fines del siglo pasado, en manos de Frerichs, Cantani, Naunyn, Lanceraux, etc. y culminaron con las experiencias de pancreatectomía en el perro, realizadas por Mering y Minkowski en 1889. La búsqueda de la presunta hormona producida por las células descritas en el páncreas, en 1869, por Langerhans, se inició de inmediato. Hedon, Gley, Laguesse y Sabolev estuvieron muy cerca del ansiado triunfo, pero éste correspondió, en 1921, a los jóvenes canadienses Banting y Charles Best, quienes consiguieron aislarse la insulina y demostrar su efecto hipoglucemiante. Este descubrimiento significó una de las más grandes conquistas médicas del siglo XX, porque transformó el porvenir y la vida de los diabéticos y abrió amplios horizontes en el campo experimental y biológico para el estudio de la diabetes y del metabolismo de los glúcidos.
11. Causas

En un principio se pensaba que el factor que predisponía para la enfermedad era un consumo alto de hidratos de carbono de rápida absorción. Pero después se vio que no había un aumento de las probabilidades de contraer diabetes mellitus respecto al consumo de hidratos de carbono de asimilación lenta.

Estudios no comprobados advierten que la diabetes tipo 1 puede ser causa de una malformación genética, la cual podemos llevar en nuestra vida sin darnos cuenta. A través de un factor externo (papera, gripe, rubeola, varicela entre otros) puede causar la aparición de la enfermedad.

Actualmente se piensa que los factores más importantes en la aparición de una diabetes tipo 2 son, además de una posible resistencia a la insulina e intolerancia a la glucosa, el exceso de peso y la falta de ejercicio. De hecho, la obesidad abdominal se asocia con elevados niveles de ácidos grasos libres, los que podrían participar en la insulinorresistencia y en el daño a la célula beta-pancreática. Para la diabetes tipo 1 priman, fundamentalmente, alguna patología que influya en el funcionamiento del páncreas (diabetes tipo 1 fulminante).

La actividad física mejora la administración de las reservas de azúcares del cuerpo y actúa de reguladora de las glucemias. Las reservas de Glucógeno aumentan y se dosifican mejor cuando el cuerpo está en
forma, ya que las grasas se queman con más facilidad, reservando más los hidratos de carbono para esfuerzo intensos o en caso de que la actividad sea muy larga que las reservas aguanten más tiempo.

➢ Causas genéticas del tipo 1

Este tipo de diabetes es causada principalmente por factores externos al organismo que la padece, (por ejemplo ciertas infecciones virales) que pueden afectar de forma directa o de forma indirecta mediante la generación de una reacción autoinmunitaria.

No obstante, existe susceptibilidad genética para padecer esta enfermedad ya que está influenciada en especial por determinados alelos de los genes del complejo mayor de histocompatibilidad (CMH) dentro del grupo de HLA, la clase I. En el grupo de los HLA de clase II, afectan sobre todo varios alelos de los loci DR3 y DR4 en los que los heterocigotos DR3/DR4 son especialmente susceptibles de padecer esta enfermedad.

Además del CMH, se sigue estudiando más de una docena de loci que incrementarían la susceptibilidad para esta enfermedad, pero hasta ahora solo existe confirmación de ello en tres de estos loci que son el gen PTPN22, que codifica una proteína fosfatasa, polimorfismos de un único nucleótido en el gen regulador de la inmunidad CTLA4 y un polimorfismo de repetición en tándem en el promotor del propio gen de la insulina.
Pero igualmente existen algunos alelos de DR2 que confieren una resistencia relativa a esta enfermedad como pueden ser los haplotipos protectores DQA1*0102 y DQB1*0602.

<table>
<thead>
<tr>
<th>Parentesco con el individuo afectado</th>
<th>Riesgo de desarrollar la enfermedad (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gemelos monocigóticos</td>
<td>40</td>
</tr>
<tr>
<td>Hermanos</td>
<td>7</td>
</tr>
<tr>
<td>Hermanos sin haplotipo DR en común</td>
<td>1</td>
</tr>
<tr>
<td>Hermanos con un haplotipo DR en común</td>
<td>5</td>
</tr>
<tr>
<td>Hermanos con 2 haplotipos DR en común</td>
<td>17</td>
</tr>
<tr>
<td>Hijos</td>
<td>4</td>
</tr>
<tr>
<td>Hijos de madre afectada</td>
<td>3</td>
</tr>
<tr>
<td>Hijos de padre afectado</td>
<td>5</td>
</tr>
</tbody>
</table>
Causas genéticas del tipo 2

Las bases genéticas y moleculares de la diabetes mellitus tipo 2 siguen estando poco definidas, pero se sabe que esta enfermedad se debe en su base a factores genéticos (concordancia en gemelos monocigóticos del 69-90% frente al 33-50% en la diabetes mellitus tipo 1 y en gemelos dicigóticos de 24-40% frente al 1-14% en la diabetes mellitus tipo 1) aunque estos están estrechamente relacionados en cuanto a su grado de expresividad con los factores ambientales ligados al estilo de vida como pueden ser el sobrepeso, la ingesta exagerada de alimentos, la relación de polisacáridos de absorción rápida o de absorción lenta consumidos, la actividad física realizada o la edad.

Algunos de los muchos loci que aumentan la susceptibilidad para esta enfermedad son: 2q24.1, 2q32, 5q34-q35.2, 6p12, 6q22-q23, 11p12-p11.2, 12q24.2, 13q12.1, 13q34, 17cen-q21.3, 17q25, 19p13.2, 19q13.1-q13.2 o 20q12-13.1

12. Complicaciones de la diabetes

Independiente del tipo de diabetes mellitus, un mal nivel de azúcar en la sangre conduce a las siguientes enfermedades. Bases son las modificaciones permanentes de las estructuras constructoras de proteínas y el efecto negativo de los procesos de reparación, p.ej.: la formación desordenada de nuevos vasos sanguíneos.
• Daño de los pequeños vasos sanguíneos (microangiopatía)
• Daño de los nervios periféricos (polineuropatía)
• Pie diabético: heridas difícilmente curables y la mala irrigación sanguínea de los pies, puede conducir a laceraciones y eventualmente a la amputación de las extremidades inferiores.
• Daño de la retina (retinopatía diabética)
• Daño renal Desde la nefropatía incipiente hasta la Insuficiencia renal crónica terminal
• Hígado graso o Hepatitis de Hígado graso (Esteatosis hepática)
• Daño de los vasos sanguíneos grandes (macroangiopatía): trastorno de las grandes Arterias. Esta enfermedad conduce a infartos, apoplejías y trastornos de la circulación sanguínea en las piernas. En presencia simultánea de polineuropatía y a pesar de la circulación sanguínea crítica pueden no sentirse dolores.
• Cardiopatía: Debido a que el elevado nivel de glucosa ataca el corazón ocasionando daños y enfermedades coronarias.
• Coma diabético: Sus primeras causas son la Diabetes avanzada, Hiperglucemia y el sobrepeso.
• Dermopatía diabética: o Daños a la piel.
• Hipertensión arterial: Debido a la cardiopatía y problemas coronarios, consta que la hipertension arterial y la diabetes son enfermedades "hermanadas".
• **Enfermedad periodontal.** Uno de los mecanismos para explicar la relación entre diabetes mellitus y periodontitis sugiere que la presencia de enfermedad periodontal puede perpetuar un estado de inflamación crónica a nivel sistémico, que se hace patente por el incremento de proteína C reactiva, IL-6, y altos niveles de fibrinógeno. La infección periodontal puede elevar el estado de inflamación sistémica y exacerbar la resistencia a la insulina. El nivel elevado de IL-6 y TNF-a es similar a la obesidad cuando induce o exacerba resistencia a la insulina. La lesión periodontal es capaz de producir alteraciones en la señalización de insulina y sensibilidad a la insulina, probablemente debido a la elevación de TNF-a en la concentración plasmática.

La retinopatía diabética: es una complicación ocular de la diabetes, causada por el deterioro de los vasos sanguíneos que irrigan la retina del fondo del ojo. El daño de los vasos sanguíneos de la retina puede tener como resultado que estos sufran una fuga de fluido o sangre. Cuando la sangre o líquido que sale de los vasos lesionada o forma tejidos fibrosos en la retina, la imagen enviada al cerebro se hace borrosa.

Neuropatía diabética: neuropatía o trastorno neuropático a los cuales se asocian diabetes mellitus. Estos estados se piensan para resultar de lesión microvascular diabética que involucra los vasos sanguíneos menores que suministra los nervios de los vasos. Los estados relativamente comunes que se pueden asociar a neuropatía diabética...
incluyen tercera parálisis del nervio; mononeuropatía; mononeuropatía múltiple; amilotrofía diabética; polineuropatía dolor; neuropatía autonómica; y neuropatía toracoabdominal

La angiopatía diabética es una enfermedad de los vasos sanguíneos relacionada con el curso crónico de la diabetes mellitus, la principal causa de insuficiencia renal a nivel mundial. La angiopatía diabética se caracteriza por una proliferación del endotelio, acúmulo de glicoproteínas en la capa íntima y espesor de la membrana basal de los capilares y pequeños vasos sanguíneos. Ese espesamiento causa tal reducción de flujo sanguíneo, especialmente a las extremidades del individuo, que aparece gangrena que requiere amputación, por lo general de los dedos del pie o el pie mismo. Occasionalmente se requiere la amputación del miembro entero. La angiopatía diabética es la principal causa de ceguera entre adultos no ancianos en los Estados Unidos. En Cuba, la tasa de angiopatías periféricas en la población diabética alcanzan los 19.5 por cada 100 mil habitantes

Cuando decimos que el Pie Diabético tiene una "base etiopatogénica neuropática" hacemos referencia a que la causa primaria que hace que se llegue a padecer un Pie Diabético está en el daño progresivo que la diabetes produce sobre los nervios, lo que se conoce como "Neuropatía". Los nervios están encargados de informar sobre los diferentes estímulos (nervios sensitivos) y de controlar a los músculos (nervios efectores). En los diábéticos, la afectación de los nervios hace
que se pierda la sensibilidad, especialmente la sensibilidad dolorosa y térmica, y que los músculos se atrofien, favoreciendo la aparición de deformidades en el pie, ya que los músculos se insertan en los huesos, los movilizan y dan estabilidad a la estructura ósea.

El hecho de que una persona pierda la sensibilidad en el pie implica que si se produce una herida, un roce excesivo, una hiperpresión de un punto determinado o una exposición excesiva a fuentes de calor o frío no se sientan. El dolor es, no lo olvidemos, un mecanismo defensivo del organismo que nos incita a tomar medidas que nos protejan de factores agresivos. Los diabéticos pueden sufrir heridas y no darse cuenta. Además, la pérdida de control muscular favorece como decimos la aparición de deformidades y éstas pueden al mismo tiempo favorecer roces, cambios en la distribución de los apoyos del pie durante la marcha y en definitiva, predisponer a determinados puntos del pie a agresiones que, de no ser atajadas a tiempo, pueden resultar fatales.

13. Complicaciones agudas

Estados hiperosmolares: llamados de manera coloquial "coma diabético", comprenden dos entidades clínicas definidas: la cetoacidosis diabética (CAD) y el coma hiperosmolar no cetósico (CHNS). Ambos tienen en común –como su nombre lo dice–, la elevación patológica de la osmolalidad sérica. Esto es resultado de niveles de glucosa sanguínea por encima de 250 mg/dL, llegando a registrarse, en
casos extremos más de 1 000 mg/dL. La elevada osmolaridad sanguínea provoca diuresis osmótica y deshidratación, la cual pone en peligro la vida del paciente.

La cetoadicosis suele evolucionar rápidamente, se presenta en pacientes con DM tipo 1 y presenta acidosís metabólica; en cambio el coma hiperosmolar evoluciona en cuestión de días, se presenta en ancianos con DM tipo 2 y no presenta cetosis. Tienen en común su gravedad, la presencia de deshidratación severa y alteraciones electrolíticas, el riesgo de coma, convulsiones, insuficiencia renal aguda, choque hipovolémico, falla orgánica múltiple y muerte.

Los factores que los desencadenan suelen ser: errores, omisiones o ausencia de tratamiento, infecciones agregadas -urinarias, respiratorias, gastrointestinales-, cambios en hábitos alimenticios o de actividad física, cirugías o traumatismos, entre otros.

Hipoglucemia: Disminución del nivel de glucosa en sangre por debajo de los 50 mg/dL. Puede ser consecuencia de ejercicio físico no habitual o sobreesfuerzo, sobredosis de insulina, cambio en el lugar habitual de inyección, ingesta insuficiente de hidratos de carbono, diarreas o vómitos, etc.

14. **Dieta en la diabetes**
Una alimentación equilibrada consiste de 50 a 60% de carbohidratos, 10 a 15% de proteínas y 20 a 30% de grasas. Esto es válido para todas las personas y con ello es también la composición alimenticia recomendable para los diabéticos del tipo 2. Una dieta reductiva común consiste de la alimentación con una menor cantidad de calorías. La cantidad de calorías debe establecerse para cada individuo. Ha dado buenos resultados que se fijen consumos calóricos totales semanales y no se esclavice a límites calóricos diarios. También ha dado buenos resultados la conducción de un registro diario de alimentación para mantener el control.

La nutrición balanceada es un elemento indispensable para el tratamiento de la diabetes mellitus. Un buen régimen alimentario se caracteriza por ser individual. Para ello debemos tener en cuenta la edad, el sexo, el peso, la estatura, el grado de actividad, clima en que habita, el momento biológico que se vive (por ejemplo una mujer en embarazo, un recién nacido, un niño en crecimiento, un adulto o un anciano), así como también la presencia de alteraciones en el nivel de colesterol, triglicéridos o hipertensión arterial.

Alimentos muy convenientes Son los que contienen mucha agua y pueden comerse libremente. Se encuentran en la acelga, apio, alcachofa, berenjena, berros, brócoli, calabaza, calabacín, cebolla cabezona, pepino cohombro, coliflor, espárragos, espinacas,
habichuela, lechuga, pepinos, pimentón, rábanos, repollo, palmitos y tomate.

Alimentos convenientes Son los alimentos que pueden ser consumidos por la persona diabética sin exceder la cantidad ordenada por el nutricionista. En estos se encuentran las harinas: Arroz, pastas, papa, yuca (mandioca), mazorca, plátano, avena, cebada, frijol, lenteja, garbanzo, soya, alverjas, habas, panes integrales y galletas integrales o de soja. En las frutas son convenientes las curubas, fresas, guayabas, mandarina, papaya, patilla, melón, piña, pitaya, pera, manzana, granadilla, mango, maracuyá, moras, naranja, durazno, zapote, uchuvas, uvas, banana, tomate de árbol, mamey y chirimoya. En cuanto a los lácteos son convenientes la leche descremada, cuajada, kumis y yogurt dietético. También son saludables las grasas de origen vegetal como el aceite de canola, de maíz, la soya, el aceite de girasol, ajonjoli y de oliva. Las verduras como zanahoria, auyama, etc.

➤ **Alimentos inconvenientes**

Carbohidratos simples como el azúcar, la panela, miel, melazas, chocolates, postres endulzados con azúcar, helados, bocadillos, mermeladas, dulces en general y gaseosas corrientes. También son inconvenientes las grasas de origen animal como las carnes grasas, embutidos, mantequilla, crema de leche, mayonesas, manteca, tocino de piel de pollo y quesos doble crema.
Cómo debe ser el horario de las comidas.

Hay que comer cada 3 a 4 horas (alimentación fraccionada) ya que de esta manera se evita una hipoglucemia o baja en nivel de azúcar en la sangre. El alimento se ajusta a la acción de los medicamentos para el tratamiento de la diabetes, sean estos hipoglucemiantes orales como son las tabletas o la acción de la insulina inyectada.
15. Bibliografía

- http://es.kioskea.net/faq/1357-eliminar-los-hipervinculos-de-un-documento-word
- http://demedicina.com/tipos-de-diabetes/